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Abstract: In this paper, we explore the appealing possibility that the strong suppres-

sion of large-size QCD instantons — as evident from lattice data — is due to a surviving

conformal space-time inversion symmetry. This symmetry is both suggested from the

striking invariance of high-quality lattice data for the instanton size distribution under

inversion of the instanton size ρ→ 〈ρ〉2/ρ and from the known validity of space-time inver-

sion symmetry in the classical instanton sector. We project the instanton calculus onto the

four-dimensional surface of a five-dimensional sphere via conformal stereographic mapping,

before investigating conformal inversion. This projection to a compact, curved geometry

is both to avoid the occurence of divergences and to introduce the average instanton size

〈ρ〉 from the lattice data as a new length scale. The average instanton size is identified

with the radius b of this 5d-sphere and acts as the conformal inversion radius. For b = 〈ρ〉,
our corresponding results are almost perfectly symmetric under space-time inversion and

in good qualitative agreement with the lattice data. For ρ/b → 0 we recover the famil-

iar results of instanton perturbation theory in flat 4d-space. Moreover, we illustrate that

a (weakly broken) conformal inversion symmetry would have significant consequences for

QCD beyond instantons. As a further successful test for inversion symmetry, we present

striking implications for another instanton dominated lattice observable, the chirality-flip

ratio in the QCD vacuum.
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1. Setting the stage

Instantons [1, 2] represent a basic non-perturbative aspect of Yang-Mills theories in general

and QCD in particular. One of the most relevant and intriguing quantities within the

instanton calculus is the instanton size distribution or instanton density. It has first been

derived for small-sized instantons via the vacuum-to-vacuum tunneling amplitude at the

one-loop-level of instanton perturbation theory in a seminal paper by ’t Hooft [2]. The

instanton size distribution has also been measured in various lattice simulations [3 – 7].

Specifically, we shall use throughout this paper the high-statistics data by the UKQCD

collaboration [5, 6] (cf. figure 1 ).

For instanton sizes ρ smaller than ∼ 0.35 fm, a parameter-free agreement with instan-

ton perturbation theory has been found [6], but a dramatic disagreement appears most

rapidly for somewhat larger instantons (cf. figure 1 ). In instanton perturbation theory,

the weight of larger instantons is growing indefinitely, causing the familiar infrared diver-

gencies of the instanton calculus. Instead, the lattice data exhibit a sharp peak around

〈ρ〉 ≈ 0.6 fm and thereafter, exhibit a strong suppression of large instantons as is also

physically expected. Altogether, a satisfactory understanding of the rôle of larger-size in-

stantons in the QCD-vacuum is definitely still lacking. It is particularly intriguing that the

breakdown of instanton perturbation theory happens so rapidly and dramatically around

the appearance of the new length scale 〈ρ〉 ∼= 0.6 fm, corresponding to the peak position

in the lattice data. It is thus clearly worthwhile, to ask what kind of underlying physics

could give rise to such a rapid and dramatic change of behaviour of the instanton density.
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Figure 1: UKQCD lattice data [5, 6] (open symbols) for the instanton size distribution, displayed

such as to suggest a virtually perfect inversion symmetry under ρ→ 〈ρ〉2/ρ with 〈ρ〉 ≈ 0.6 fm (open

and solid data symbols fit onto one universal, symmetric curve). The solid line corresponds to the

parameter-free prediction of instanton perturbation theory [6] using the lattice result Λ
MSnf =0

=

(238 ± 19)MeV from the ALPHA collaboration [8].

The purpose of this paper is to discuss and to substantiate an appealing, possible

explanation, which was first proposed by one of us [9]. The central idea is that a residual

symmetry under conformal inversion of space-time,

xµ → x ′
µ =

〈ρ〉2
x2

xµ, (1.1)

might be at the root of protecting instantons of becoming too large.

First of all, as apparent from figure 1, the lattice data [5] appear to be invariant under

an inversion of the instanton size ρ,

ρ⇔ ρ ′ =
〈ρ〉2
ρ
. (1.2)

The reason for displaying the lattice data in figure 1 versus ln(ρ/〈ρ〉) was to make the

virtually perfect symmetry under an inversion (1.2) of ρ self-evident in the lattice data.

Both the open data symbols, referring to the original data points, and the solid ones,

involving inverted arguments according to eq. (1.2), fit beautifully onto one universal,

symmetric curve.

On the theoretical side, the possibility of such an inversion symmetry is particularly

appealing, since it may well be a “relict” from the known conformal invariance of the

whole instanton sector at the classical level [10, 11].
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Let us briefly recall some essential facts about the symmetry under space-time inver-

sion (1.1) at the classical instanton level and why it may be rewritten as an inversion (1.2)

of the instanton size.

Indeed (cf. appendix A), under a space-time inversion (1.1) the familiar expression for

the vector potential of an SU(2) instanton in regular gauge, with gauge coupling g, ’t Hooft

coefficients [2] η̄aµν and size ρ,

A
a (I)reg
µ (x; ρ) =

2

g

η̄aµνx
ν

ρ2 + x2
, (1.3)

changes into that of an anti -instanton in singular gauge of size ρ ′ ≡ 〈ρ〉2/ρ [10],

Aa (I) reg
µ (x; ρ) → A′ a (I) reg

µ (x ′; ρ) =
∂xν

∂x′µ
Aa (I) reg

ν (x; ρ) = Aa (I) sing
µ

(
x ′;

〈ρ〉2
ρ

)
. (1.4)

Using the corresponding conformal transformation law for the field strength tensor under

an inversion (1.1),

Ga (I) reg
µν (x; ρ) → G′ a (I) reg

µν (x ′; ρ) =
∂xα

∂x′µ
∂xβ

∂x′ν
Gαβ(x; ρ) = Ga (I) sing

µν

(
x ′;

〈ρ〉2
ρ

)
(1.5)

one readily derives for the Lagrange density [9]

L(I) (x, ρ) → L(I) ′
(
x ′, ρ

)
= L(I)

(
x ′,

〈ρ〉2
ρ

)
(1.6)

The action is of course invariant, since it is independent of the instanton size and the same

for instantons and anti-instantons.

∫
d4x ′ L(I) ′

(
x ′, ρ

)
=

∫
d4xL(Ī)

(
x,

〈ρ〉2
ρ

)
=

∫
d4x L(I) (x, ρ) =

8π2

g2
= SE. (1.7)

Obviously in eqs. (1.4), (1.5), (1.6), the coordinate inversion (1.1) has the effect of just

inverting the instanton size, apart from I → I conjugation and changing the gauge from

regular ↔ singular. An invariance under instanton size inversion for the size distribution

is exactly the symmetry indicated by the lattice data (cf. figure 1). The I → I conjugation

is of no concern, since the size distribution as simulated on the lattice, is a sum of both,

instantons and anti-instantons.

The invariance under scale transformations (dilatation) is well-known to be broken

at the quantum level via regularisation/renormalisation. While unbroken scale invariance

would (nonsensically) make any value of 〈ρ〉 physically equivalent, its breaking signalled

by the non-vanishing trace of the energy-momentum tensor, θµ
µ ∝ −〈0 | αs

π Ga 2
µν | 0〉 6= 0,

suggests 〈ρ〉 ∼ 〈0 | αs

π Ga 2
µν | 0〉−1/4.

Let us also recall [12, 13] in this context the special rôle of the space-time inversion Ib
at some radius b. It acts as a discrete conformal transformation that cannot be expressed

in infinitesimal form. Hence it cannot be among the 15 generators of the conformal group.

Yet the dilatation Dλ and the special conformal transformations Kαµ can be expressed by

– 3 –
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two inversions Ia, Ib of different inversion radii and a translation Tcµ (from the Poincaré

subgroup) by a 4-vector cµ ,

Db/a = Ib Ia, (1.8)

Kcµ/a = IaTcµIa. (1.9)

According to eq. (1.8), non-trivial scale transformations require the space-time inversion

symmetry to hold for arbitrary inversion radii. If the inversion radius is instead associated

with a physical scale, the average instanton size 〈ρ〉 ≈ 0.6 fm, scale transformations Db/a

naturally drop out due to a = b = 〈ρ〉 in eq. (1.8), while the inversion I〈ρ〉 may well survive

as a symmetry.

Being defined via the vacuum-to-vacuum tunneling amplitude at the quantum level [2,

14], the full instanton size distribution represents a difficult challenge with regard to the

question of conformal space-time inversion symmetry. Hence, a rigorous proof of the ap-

parent ρ → 〈ρ〉2/ρ symmetry is beyond the scope of this investigation. Rather, in this

paper, our line of attack is restricted to a detailed study of the zero-mode part of the

size distribution, which we argue constitutes the “dominating” source of the ρ-dependence.

Since the zero-modes are closely related to the classical instanton, there is indeed hope that

the inversion symmetry is (approximately) preserved. Section 2 contains the layout and

justification of this underlying strategy. In this context, it is most encouraging that the

instanton size distribution of supersymmetric Yang-Mills theories is known to be entirely

given in terms of zero-modes [15].

Section 3 is central to our approach and also contains our main respective results: We

first project the instanton calculus onto the four-dimensional surface of a five-dimensional

sphere via conformal stereographic mapping, before investigating conformal inversion. On

the one hand, this projection to a compact, curved geometry avoids the occurence of diver-

gences under space-time inversion. On the other hand, it serves to introduce the average

instanton size 〈ρ〉 from the lattice data as a crucial length scale through its identification

with the radius b of this 5d-sphere, acting as the conformal inversion radius.

In section 4, we shall briefly discuss some direct, alternative evidence for space-time in-

version from the lattice data for a completely independent (lattice) observable, the chirality-

flip ratio RNS in the QCD vacuum [16, 17].

The validity of our proposed inversion symmetry would allow to access the non-

perturbative regime of large-size instantons (yet with small ρ ′ = 〈ρ〉2/ρ) in terms of

instanton perturbation theory for instantons with small ρ ′. It may well have important

consequences beyond instanton physics for QCD in general. This intriguing possibility will

be addressed towards the end, in section 5.

2. Inversion symmetry at the quantum level?

Since the conformal space-time inversion symmetry connects the physics at short and long

distances, it appears very interesting to investigate its possible validity beyond the classical

instanton level in more rigorous terms. This section and the following one are devoted to

this non-trivial task.

– 4 –
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Let us start from the vacuum-to-vacuum transition amplitude at one-loop level [2,

14] which directly determines the leading expression for the instanton size distribution

d (ρµr, αs(µr)),

〈0|0〉(I) =

∫ ∏

i

dγiJ (γ)Q (γ) e−
2π
αs =

∫
d4z

dρ

ρ5
d (ρµr, αs(µr)) (2.1)

with the integrations on the left of eq. (2.1) extending over all collective coordinates γi ∈
γ = {U, zµ, ρ}, i.e. the colour orientation matrices U , the position zµ and the size ρ of the

instanton.

As detailed by Bernard [14] and apparent in eq. (2.1), the size distribution factors into

contributions from zero modes and non-zero modes as follows.

The quantity J (γ) is the collective-coordinate Jacobian and thus originates from the

various zero modes ψ(i) as,

J (γ) =

(
∏

i

1√
2π

)
(det U)1/2 =

(
∏

i

1√
2π

)
‖ψ(i)‖ (2.2)

due to the orthogonality of the zero modes with normalisations

U ij = 2

∫
d4xTr

[
ψ(i)

µ (x)ψ(j)µ(x)
]

=

∫
d4xψ(i)

µa ψ
(j)µa = δij ‖ψ(i)‖2

where ψ(i)
µ ≡ ψ(i)

µa

λa

2
, ‖ψ(i)‖2 = 2

∫
d4xTr

[
ψ(i)

µ (x)ψ(i)µ(x)
]
.

(2.3)

The quantity Q (γ) in eq. (2.1) contains the remaining determinants from Gaussian func-

tional integration taken over the non-zero mode parts as indicated by the primes.

Q (γ) ≡ [det−1/2 M ′
A(γ) detMgh(γ)]Acl=A(I)

[det−1/2M ′
A det Mgh]Acl=0

. (2.4)

The resulting dimensionless size distribution d (ρµr, αs(µr)), as introduced on the right

of eq. (2.1), is known [2, 18] to take the following form for sufficiently small instanton sizes

ρ,

d (ρµr, αs(µr)) = ρ5 dn(I)

d4z dρ
= C

(
2π

αs(µr)

)2Nc

exp

(
− 2π

αs(µr)

)
(ρµr)

b , (2.5)

with known, scheme dependent constant C, renormalisation constant µr and exhibiting

renormalisation group invariance at

1 − loop level

2 − loop level

}

for b =

{
β0; αs(µr) = α1-loop

s (µr)

β0 + (β1 − 4Nc β0)
αs(µr)

4π ; αs(µr) = α2-loop
s (µr),

(2.6)

in terms of the first two coefficients of the QCD β-function

β0 =
11

3
Nc −

2

3
nf ; β1 =

34

3
N2

c −
(

13

3
Nc −

1

Nc

)
nf . (2.7)
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The resulting ρ dependence at two-loop level is displayed in figure 1.

We are now ready to present the strategy we are going to pursue.

First of all, we know that the classical instanton gauge field manifestly reacts to a space-

time inversion with an instanton size inversion, ρ → ρ ′ = 〈ρ〉2/ρ. Secondly, zero modes

are just derivatives of the classical gauge field with respect to the collective coordinates γi

(apart from possible gauge transformations),

ψ(i)
µ (x) ∼ ∂A

(I)
µ (x; γ)

∂γi
. (2.8)

Hence there are good reasons to hope that the size inversion symmetry is inherited by the

entire zero mode contribution to the instanton size distribution. This crucial part of the

task will be explicitly studied further below. The result will formally not be restricted to

small values of ρ.

Thirdly, the instanton size distribution appears to be dominated by the zero mode (ZM)

contribution J(γ) to exponential accuracy, since 4Nc ≫ Nc/3 and since from eq. (2.5)

d(ρµr, αs)1−loop ∝ (ρ)βo = (ρ)4 Nc−
Nc
3 = (ρ)4 Nc

︸ ︷︷ ︸
ZM part ρ5 J(γ)

· (ρ)−
1
3
Nc

︸ ︷︷ ︸
non-ZM part Q(γ)

.
(2.9)

In supersymmetric Yang-Mills theory, the zero mode part becomes even more important1.

In this case, the size-distribution dSUSY(ρµr, αs(µr)) is entirely determined by J(γ), as

was shown in [15], since all non-zero mode contributions cancel precisely to any order in

perturbation theory, see also [19, 15].

Within the regime of instanton perturbation theory, the non-zero mode contribution

was first shown by ’t Hooft [2] to yield

Q(γ) ∝ µ4 Nc
r

(
1

ρµr

)Nc
3 SU(3)

= µ4 Nc
r

1

ρµr
, (2.10)

Since Q(γ) becomes infrared sensitive for large ρ, rigorous results about the effects of

space-time inversion in Q(γ) are beyond the scope of this paper. Hence, taking recourse

to the argued dominance of the zero mode contribution, we shall heuristically carry along

Q(γ) ∝ ρ−Nc/3 = 1/ρ from eq. (2.10) as a “correction” factor for all values of ρ. This leads

us to investigate the ρ→ ρ ′ = 〈ρ〉2/ρ symmetry for the following approximate form of the

instanton size distribution

d (ρµr, αs(µr)) ∝ ρ5 J (ρ)
µ4 Nc

r

(µrρ)Nc/3
exp

{
− 2π

αs(µr)

}
, (2.11)

with the zero mode contribution J(ρ) given via eqs. (2.2), (2.3).

Specializing next to SU(3) instantons, we encounter four types of zero modes: one di-

latation zero mode ψ
(ρ)
µ (x), four translation zero modes ψ

(z)
µ (x) and two types of colour zero

1We are grateful to Mikhail Shifman for pointing this out to one of us (F.S.).
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modes2: three colour zero modes coming from the generators λ1, λ2, λ3, ψ
(a)
µ (x), and finally

four colour modes coming from the remaining generators λ4, . . . , λ7, denoted as ψ
(α)
µ (x).

All in all we have 12 collective coordinates parameterising the instanton configuration for

an SU(3) gauge group. The corresponding twelve zero modes are listed in appendix B.

Their normalisations [14] are given by

1√
2
‖ψ(ρ)‖ = ‖ψ(z)‖ =

1

ρ
√

2
‖ψ(a)‖ =

1

ρ
‖ψ(α)‖ =

√
2π

αs
, (2.12)

yielding a total zero mode contribution

ρ5 J (γ) = ρ5 ‖ψ(ρ)‖ ‖ψ(z)‖4 ‖ψ(a)‖3 ‖ψ(α)‖4

(2π)6

=
1

24π6

(
2π

αs

)6

ρ12.

(2.13)

In order to study the behaviour of the zero mode part under conformal inversion,

we have to apply the transformations of eq. (A.3) and eq. (A.4) in appendix A to the

normalisation integrals (2.3). But we encounter a number of obvious deficiencies from the

start that require a basically modified procedure.

(i) While the normalisation integrals of the inverted dilatation colour zero modes,

ψ
(ρ) ′
µ (x ′, ρ) and ψ

(a) ′
µ (x ′, ρ), give a finite result, the normalisations for the inverted

translation zero modes ψ
(z) ′
µ (x ′, ρ) and the inverted colour zero modes ψ

(α) ′
µ (x ′, ρ)

turn out to be divergent. Hence a suitable regularization procedure is obviously

required before any further statements can be made.

(ii) After application of a space-time inversion transformation to the convergent dilatation

and colour mode normalisation integrals, the ρ dependence is indeed modified, yet

the normalisation integrals turn out not to be invariant under space-time inversion.

For example,

‖ψ (a)(ρ)‖ ⇒ ‖ψ (a) ′(ρ)‖ =

√
4π

αs
ρ ′ = ‖ψ (a)(ρ ′)‖ 6= ‖ψ (a)(ρ)‖. (2.14)

(iii) From the lattice data it is apparent that we first have to incorporate the conspicuous

instanton scale 〈ρ〉 into the framework, before we can hope for a satisfactory peak

description of the instanton size distribution with a symmetry under ρ→ 〈ρ〉2/ρ. The

simple monomials in ρ from leading order of instanton perturbation theory (2.12) are

certainly inadequate.

The next section is devoted to an elegant resolution of these difficulties and requirements

(i)-(iii).

2This is because the generators λi, i = 1 . . . 7, of the gauge group SU(3) are grouped into different

multiplets (a triplet and two doublets) with respect to the SU(2) subgroup.
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x’ x
0

Q

Q ′

P

P ′

N

S

r5

rµ

r5

-r5

〈ρ〉

Figure 2: Relation between inversion and stereographic projection: The points P and Q define

the two distances x and x ′, which are related by the condition of inversion, x2 x ′ 2 = 〈ρ〉4. As

a consequence, the projected points P
′ and Q

′ differ only in the sign of the coordinate r5. An

inversion leads to an exchange of the northern and southern hemisphere.

3. Implementing the instanton scale 〈ρ〉

We achieve the finiteness and invariance of all zero mode normalisation integrals under

conformal space-time inversion and the introduction of the desired new scale 〈ρ〉 into the

instanton calculus by projecting the 4-dimensional Euclidean space onto the surface of a

sphere, embedded in 5-dimensional Euclidean space [20, 21] via stereographic projection3,

xµ → ra = (rν , r5) , (3.1)

where

rν =
2 〈ρ〉2 xν

〈ρ〉2 + x2
,

r5 = 〈ρ〉 〈ρ〉
2 − x2

〈ρ〉2 + x2
,

(3.2)

such that

r2 = rar
a = rνr

ν + r25 = 〈ρ〉2. (3.3)

3From now on we will use Latin indices for the 5-dimensional space whereas the Greek indices run as

usual from 1 . . . 4. Hatted quantities were subject to a stereographic mapping, the prime denotes as before

an inversion in Euclidean space-time.
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This mapping was done for the first time by Jackiw and Rebbi [10], where an O(5)-

covariant instanton calculus was developed. However, this was only possible by taking

the radius of the spere to be equal to the size parameter ρ of the instanton. The crucial

difference in our approach lies precisely in this radius: In our case it meant to have a fixed,

physical value. We identify the radius of the sphere with the average size of an instanton:

r2 = 〈ρ〉2 ≈ (0.6 fm)2. Of course, we shall also study the interesting limits 〈ρ〉 → 0, ∞
further below, in order to reconnect with the known results of instanton perturbation

theory.

The sphere, being a compact and curved manifold, will at the same time serve as regu-

lator for the divergent normalisation integrals. The stereographic projection is a conformal

transformation itself, corresponding to a scale factor

σsp(x, 〈ρ〉) =

(
〈ρ〉2 + x2

)2

4〈ρ〉4 . (3.4)

The relation between the 4-dimensional Euclidean volume element and the area element

on the hypersphere turns out to be quite remarkable:

dA =
1

σsp (x, 〈ρ〉)2 d4x

=
16 〈ρ〉8

(〈ρ〉2 + x2)4
d4x.

(3.5)

We find that — apart from a multiplicative constant — the conformal factor σ−2
sp (x, ρ) just

equals the Lagrange density of an instanton in 4-dimensional flat space,

L(I) =
2

παs

6 ρ4

(ρ2 + x2)4
, (3.6)

if the radius of the sphere corresponds to the instanton size ρ. This somewhat surprising re-

lation is due to the functional form of the instanton field and suggests that the 5-dimensional

sphere is a natural environment for studying symmetry properties of instanton physics that

are eventually hidden in Euclidean space.

The projection of the instanton calculus onto the sphere is a straight forward appli-

cation of the rules of eq. (A.3) and eq. (A.4). The only difference being that here we go

from four space-time coordinates to five space-time coordinates plus one constraint, which

requires some care when inverse transformations are involved (see appendix A).

Let us also note that the entire set of the four translation zero modes in background

gauge, has the form of the field strength tensor [14],

ψ(zν )
µ (x) = Fµν(x). (3.7)

Nevertheless we are interested in the lengths of the four individual translational zero modes,

each representing a vector field. Thus only one space-time index of the collectivity of

translation zero modes is affected by a conformal inversion (cf. appendix A),

ψ (zν) ′
µ (x ′) =

√
σinv(x)I

σ
µ (x)ψ(zν )

σ (x); ν = 1 . . . 4. (3.8)

– 9 –
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This puts the behaviour of normalisation integrals under inversion4 for all types of zero

modes on the same footing, and is in accordance with the computation in [14], where the

total contribution in eq. (2.13) is the product of the twelve individual zero modes.

Since the stereographic projection and the inversion are both conformal transforma-

tions, it is not surprising that the conformal factor σsp(x, 〈ρ〉) transforms under inversion

as

σsp(x
′, 〈ρ〉) =

σsp(x, 〈ρ〉)
σinv(x, 〈ρ〉)

. (3.9)

Due to eq. (3.9), the area element (3.5) on the 5-dimensional sphere transforms under

conformal inversion in Euclidean space as

dA ′ =
d4x ′

σ2
sp(x

′, 〈ρ〉) =
d4x

σ2
inv(x, 〈ρ〉)σ2

sp(x ′, 〈ρ〉) =
1

σsp (x, 〈ρ〉)2 d4x = dA (3.10)

and is thus invariant.

Let us stress that this result holds since according to our approach, the radius of the

5-dimensional sphere was identified with the radius of inversion5, i.e. the average instanton

size 〈ρ〉.
We lift the zero modes, which we have computed in Euclidean space first, by means of

stereographic projection to the sphere. For the normalisation integrals of the zero modes

projected on the sphere we have to evaluate the following expression applying eq. (A.10),

‖ψ̂ (ρ) ‖2 = 2

∫
dA Tr

[
ψ̂a(r)ψ̂

a(r)
]

= 2

∫
d4xσ−1

sp (x, 〈ρ〉)Tr [ψµ(x)ψµ(x)] ,

(3.11)

and compare now eq. (3.11) to the normalisation integral of the inverted zero modes ψ̂ ′

projected onto a sphere with radius 〈ρ〉. We find readily

‖ψ̂ ′ (ρ) ‖2 = 2

∫
dA ′ Tr

[
ψ̂ ′

a(r
′)ψ̂a ′ (r′)

]
= 2

∫
dA Tr

[
ψ̂a(r)ψ̂

a(r)
]

= ‖ψ̂ (ρ) ‖2 (3.12)

due to dA ′ = dA from eq. (3.10) and with the help of eqs. (A.10), (3.9),

Tr
[
ψ̂ ′

a(r
′)ψ̂a ′ (r′)

]
= σsp(x

′, 〈ρ〉) Tr
[
ψ ′

µ

(
x ′
)
ψ µ ′

(
x ′
)]

= σsp(x
′, 〈ρ〉)σinv(x, 〈ρ〉) Tr [ψµ(x)ψµ(x)]

= σsp(x, 〈ρ〉) Tr [ψµ(x)ψµ(x)]

= Tr
[
ψ̂a(r)ψ̂

a(r)
]
. (3.13)

Since the radius of the sphere and the radius of inversion are equal, we find that all

normalisation integrals of the zero modes are invariant under conformal inversion. This

4This applies actually to all conformal transformations, notably to stereographic projections.
5Relations for different radii of sphere and inversion can be found in [22].
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encouraging fact is a central result of our approach. It notably implies a particular form

of the resulting ρ dependence of the zero mode contribution, which will be examined next.

Another important implication is that the troublesome translation and colour zero modes,

ψ(z)(x) and ψ(α)(x), now retain finite normalisation integrals under space-time inversion.

Next, let us turn to the crucial question: Does the invariance (3.12) of the total zero

mode contribution

Ĵ(κ) =
1

(2π)6
‖ψ̂(ρ)‖ × ‖ψ̂(z)‖4 × ‖ψ̂(a)‖3 × ‖ψ̂(α)‖4 (3.14)

under space-time inversion reflect in an instanton size distribution (2.11) [with µr ≈ 1/〈ρ〉]
that is (approximately) invariant under inversion of the instanton size?

To this end, we evaluate first the various types of zero mode norms individually, intro-

ducing the dimensionless variable,

κ =
ρ

〈ρ〉 , (3.15)

such that

ρ→ ρ ′ =
〈ρ〉2
ρ

⇔ κ→ 1

κ
⇔ ln(κ) → − ln(κ). (3.16)

We find the following results on the sphere:

Dilatation zero mode:

‖ψ̂(ρ)(κ)‖2 = 2

∫
d4xσ−1

sp (x, 〈ρ〉) Tr
[
ψ(ρ)

µ (x)ψ µ (ρ)(x)
]

=
1

παs

∫
d4x

48〈ρ〉4
(〈ρ〉2 + x2)2

ρ2x2

(ρ2 + x2)4

=
16π

αs

(
−12κ2

(
1 + κ2

)
ln (κ)

(κ2 − 1)5
+

(
κ4 + 10κ2 + 1

)

(κ2 − 1)4

)

=
1

κ4
‖ψ̂(ρ)

(
1

κ

)
‖2

(3.17)

The functional form of this normalisation integral is preserved up to a scaling factor for κ.

Therefore we find that

κ ‖ψ̂(ρ)(κ)‖ =
1

κ
‖ψ̂(ρ)

(
1

κ

)
‖ (3.18)

is symmetric under inversion of κ⇔ 1/κ, while ‖ψ̂(ρ)(κ)‖ is not.

Colour zero modes for λa; a = 1, 2, 3:

‖ψ̂(a)(κ)‖2 = 2

∫
d4xσ−1

sp (x, 〈ρ〉) Tr
[
ψ(a)

µ (x)ψ µ (a)(x)
]

=
1

παs

∫
d4x

48〈ρ〉4
(〈ρ〉2 + x2)2

ρ4x2

(ρ2 + x2)4

=
16π

αs
〈ρ〉2κ2

(
−12κ2

(
1 + κ2

)
ln(κ)

(κ2 − 1)5
+

(
κ4 + 10κ2 + 1

)

(κ2 − 1)4

)
= ‖ψ̂(a)

(
1

κ

)
‖2

(3.19)
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The colour zero modes are exactly symmetric under κ ⇔ 1/κ. Moreover, as in flat 4-

dimensional space, eq. (2.12), they satisfy

‖ψ̂(a)(ρ)‖ = ρ ‖ψ̂(ρ)(ρ)‖ (3.20)

Colour zero modes for λα; α = 4 . . . 7:

‖ψ̂(α)(κ)‖2 = 2

∫
d4xσ−1

sp (x, 〈ρ〉) Tr
[
ψ(α)

µ (x)ψ µ (α)(x)
]

=
1

παs

∫
d4x

16〈ρ〉4
(〈ρ〉2 + x2)2

1

(ρ2 + x2)3

=
8π

αs
〈ρ〉2κ2

[
4κ2

(
2 + κ2

)
ln(κ)

(κ2 − 1)4
−
(
1 + 5κ2

)

(κ2 − 1)3

]
(3.21)

For these colour zero modes, the functional form of the normalisation integral changes

under an inversion of the instanton size and thus it is not symmetric.

Translation zero modes:

‖ψ̂(z)(κ)‖2 = 2

∫
d4xσ−1

sp (x, 〈ρ〉) Tr
[
ψ(z)

µ (x)ψ µ (z)(x)
]

=
1

παs

∫
d4x

48〈ρ〉4
(〈ρ〉2 + x2)2

ρ4

(ρ2 + x2)4

=
8π

αs

(
12κ4

(
κ2 + 3

)
ln(κ)

(κ2 − 1)5
−
(
17κ4 + 8κ2 − 1

)

(κ2 − 1)4

)

= ‖ψ̂(z)

(
1

κ

)√
σinv‖2

(3.22)

The functional form of this normalisation integral changes under an inversion of ρ, thus

this zero mode is not symmetric under the desired transformation.

In figures 3–6, the normalisation integrals of the four different types of zero modes are

displayed versus ln (κ). It is apparent at first sight that except for the colour zero modes

ψ(a) shown in figure 4, the individual normalisation integrals are not manifestly symmetric

functions under instanton size inversion κ → 1/κ i.e. ln (κ) ↔ − ln (κ). Yet we recall that

κ‖ψ̂(ρ)(κ)‖ is symmetric as well.

However, after evaluating the total zero mode contribution κ5 Ĵ(κ) in eq. (3.14), along

with the non-zero mode correction factor 1/κ via eq. (2.11), we find the following, very

promising results depicted in figure 7:

• Unlike conventional instanton perturbation theory, larger sized instantons are

strongly suppressed in qualitative accordance with the lattice data (cf. figure 1) and

general expectations.

• Despite the fact that some zero mode norms are asymmetric under κ ↔ 1/κ, the

total zero mode contribution κ5 Ĵ(κ) times the 1/κ non-zero mode correction leads

– 12 –
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Ĵ
(κ

)/
〈ρ
〉7

1e-08

1e-06

0.0001

0.01

1

100

10000

1e+06

-4 -2 0 2 4

Line1
Line2

ln (κ/1.19)

κ
4
Ĵ
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Figure 7: (Left): Total zero mode contribution κ5 Ĵ(κ)
/
〈ρ〉7 times 1/κ on the sphere, as rele-

vant for the instanton size distribution d(ρµr, αs) in eq. (2.11). As abscissa, we use ln (κ/1.19) =

ln (ρ/(1.19 〈ρ〉)) to make small deviations from a perfect size inversion symmetry for κ/1.19 ↔
1.19/κ self-evident. Line1 and Line2 display the results versus κ/1.19 and 1.19/κ, respectively.

(Right): Same plot, but using a logarithmic ordinate, to demonstrate the high degree of inversion

symmetry over fourteen orders of magnitude, with Line1 and Line2 being visually indistinguishable!
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nonetheless to an instanton size distribution (2.11) that appears strikingly symmetric

under this instanton size inversion after a slight rescaling

κ→ 1.19κ, (3.23)

• figure 7 (right) illustrates impressively that the size distribution on the sphere and the

inverted distribution are almost indistinguishable over fourteen orders of magnitude!

• The slight rescaling factor (3.23) of O(1) might well find an explanation as a scheme-

dependence effect within renormalisation-group considerations as in section 5

Let us discuss next some important analytical properties and limits of the total zero mode

part κ5 Ĵ(κ)
/
〈ρ〉7. Since the latter depends only on κ, the following two interesting inter-

pretations of the limit κ→ 0 are identical with respect to our results:

κ→ 0 :

{
The radius 〈ρ〉 of the sphere tends to infinity for fixed instanton size ρ.

The instanton size ρ tends to zero for fixed radius 〈ρ〉 of the sphere.

Limit of small instantons on the sphere:

κ→ 0 ⇔ 〈ρ〉 → ∞, ρ fixed ⇔ ρ→ 0, 〈ρ〉 fixed to its physical value (3.24)

For 〈ρ〉 → ∞, ρ fixed, we recover the same values for the zero mode normalisations as

in flat Euclidean space (cf. eq. (2.13)), apart from an additional factor of 2 for every zero

mode normalisation. It comes from the conformal factor of the stereographic projection:

ψ̂aψ̂
a =

4 〈ρ〉4
(〈ρ〉2 + x2)2

ψµψ
µ 〈ρ〉→∞

= 4ψµψ
µ (3.25)

The zero mode part ρ5 Ĵ(ρ) rises as O
(
ρ12
)

for small instantons in perfect agreement with

instanton perturbation theory in flat Euclidean space (2.13). As it should be in this regime

of conventional instanton perturbation theory, any dependence of the size distribution on

the new instanton scale 〈ρ〉 drops out in this limit.

Limit of large instantons on the sphere:

κ→ ∞ ⇔ 〈ρ〉 → 0, ρ fixed ⇔ ρ→ ∞, 〈ρ〉 fixed to its physical value (3.26)

We find that ρ5 Ĵ(ρ) decreases like O
(
1/ρ12

)
, i.e. it decreases with the the same power as

in the previous case, corresponding to asymptotic instanton size inversion symmetry!

Limit for κ = 1: this corresponds to the case of 〈ρ〉 = ρ, which was considered in

refs. [10, 23]. The expansion of ρ5 Ĵ(ρ) about κ = 1 reproduces these well-known results,

as expected.
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4. Conformal inversion and the chirality-flip ratio

It is clearly desirable to have another independent and preferably direct test of conformal

inversion symmetry besides the instanton size distribution (cf. figure 1). In this section we

shall briefly include an interesting such possibility from ongoing work [24].

If instantons are the dominant source of non-perturbative interactions in the QCD

vacuum, then one should be able to observe that light quarks (zero modes) flip their

chirality each time they cross the field of an instanton. Therefore, in refs. [16, 17], the

following chirality-flip ratio RNS was introduced as function of Euclidean time t,

RNS(t) ≡
ANS

flip(t)

ANS
non-flip(t)

=
Ππ(t) − Πδ(t)

Ππ(t) + Πδ(t)
, (4.1)

in terms of the flavour non-singlet (NS) pseudo-scalar and scalar two-point correlators,

Ππ(t) = 〈0 | Jπ(t)J†
π(0) | 0〉, Jπ(x) = u(x)iγ5d(x),

Πδ(t) = 〈0 | Jδ(t)J
†
δ (0) | 0〉, Jδ(x) = u(x) d(x).

(4.2)

Notice that the ratio RNS(t) must vanish as t → 0 (no chirality flips), and must approach

1 as t→ ∞ (infinitely many chirality flips).

These characteristic predictions for the chirality-flip ratio have been checked on the

lattice in ref. [17] (within the quenched approximation). The results displayed in figure 8,

indeed provide impressive evidence for instanton dominance, as was discussed in detail in

ref. [17].

After these prerequisites, let us turn next to the important question whether these

lattice data for RNS, might show evidence for conformal space-time inversion symmetry at

work? We expect the following general time inversion law for a scalar observable [25] with

conformal scaling dimension ∆

RNS (t) =

(
t

〈t〉

)2∆

RNS

(〈t〉2
t

)
. (4.3)

∆ can be immediately fixed from the two general requirements that RNS(t) approaches a

nonvanishing constant (= 1 ) for large t, while — within an instanton framework — it

vanishes ∝ t6 for t → 0, due to the known behaviour of (the square of) the non-zeromode

propagator in the denominator of the chirality-flip ratio (4.1). We then immediately infer

from the ansatz (4.3),

∆ = 3. (4.4)

In figure 8, the prediction ( t/〈t〉 )6 RNS
(
〈t〉2/t

)
from conformal inversion (4.3) with

∆ = 3, and invoking the lattice data at large t values (t >∼ 〈t〉 ≈ 0.45 fm), is overlaid on

the lattice data for small t <∼ 〈t〉.
Apparently, the agreement is virtually perfect and thus supports strongly the validity

of conformal space-time inversion. Note that this is not only an independent test using

directly lattice data, but also it probes for the first time conformal inversion properties in

the fermionic sector.
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Figure 8: Alternative test of conformal (space-) time inversion symmetry for t→ 〈t〉2/t, according

to eqs. (4.1), (4.3) for the chirality-flip correlatorRNS(t), using directly (quenched) lattice data from

ref. [17]. The abscissa denotes Euclidean time in fermi. The agreement of the direct and overlaid

data provides strong evidence that conformal (space-)time inversion holds also in the fermionic

sector.

5. Implications beyond instantons

In this section, we shall argue that the advocated ρ → 〈ρ〉2/ρ inversion symmetry of the

instanton size distribution will affect the form of αs, and thus has implications for QCD in

general.

With the size distribution being a (lattice) observable, it must be renormalisation-

group invariant. Indeed, for the perturbative expression eq. (2.5), one finds at the two-loop

level, with αs(µr) = α2-loop
s (µr),

exp

(
− 2π

αs(µr)

)
(ρµr)

β0+β1
αs(µr)

4π = exp

(

− 2π

αs(
1
ρ )

)
(
1 + O(α2

s(µr) ln(ρµr)
2
)
;

(
2π

αs(µr)

)2Nc

(ρµr)
−4Nc β0

αs(µr)
4π =

(
2π

αs(
1
ρ)

)2Nc (
1 + O(α2

s(µr) ln(ρµr)
2
)
.

(5.1)

Hence, at two-loop level, the perturbative instanton size distribution (2.5) may be rewritten
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in manifestly renormalisation group invariant form,

d (ρµr, αs(µr)) = d

(
1, αs(

1

ρ
)

)
= C

(
2π

αs(
1
ρ )

)2Nc

exp

(
− 2π

αs(
1
ρ )

)
= ρ5 dn(I)

d4z dρ
(5.2)

with all ρ dependence now residing in the running coupling αs(
1
ρ). Next, we follow ref. [6]

and define a (non-perturbative) “instanton scheme” for the running coupling,

αI
s

(
1

ρ

)
= αMS

s

(
sI

ρ

)
≡ αs

(
sI

ρ

)
, (5.3)

by the requirement that the perturbative expression (2.5) of the density, involving the

two scheme-independent β-function coefficients β0, β1, remains valid for all values of αI
s .

Surprisingly, the form of αMS
s (sI

ρ ), implicitly defined by this prescription and directly

extracted from a comparison with the UKQCD data [5, 6] for the instanton size distribution

(cf. figure 1), showed a (confining) Cornell form αs ≈ 3
4 σ ρ

2 + · · · for ρ>∼〈ρ〉 with string

tension
√
σ ≈ 472 MeV, while beautifully agreeing with the 3-loop perturbative form of

αMS
s for ρ<∼〈ρ〉. In addition, the resulting scale factor [6], sI = ΛMS/ΛI ≈ 1.18 = O(1),

puts the ”instanton scheme” very close to the MS scheme in the perturbative regime!

After these relevant prerequisites, let us combine the requirements of renormalisation-

group invariance (5.2) and conformal space-time invariance of the instanton size distribution

d (ρµr, αs(µr)),

d

(
1, αI

s

(
1

ρ

))
=

(〈ρ〉
ρ

)2∆

d

(
1, αI

s

(
ρ

〈ρ〉2
))

. (5.4)

In the present more general context, and in analogy to eq. (4.3) of the preceeding section 4,

we have allowed for a (small) non-vanishing conformal scaling dimension ∆ that may bal-

ance the remaining uncertainty concerning the infrared behaviour of the non-zero mode

part Q(γ) (cf. eq. (2.10)). With the form (5.2) in the ”instanton scheme”, eq. (5.4) implies

the relation,

(
2π

αI
s(

1
ρ)

)2Nc

exp

(
− 2π

αI
s(

1
ρ)

)
=

(〈ρ〉
ρ

)2∆
(

2π

αI
s(

ρ
〈ρ〉2

)

)2Nc

exp

(
− 2π

αI
s(

ρ
〈ρ〉2

)

)
, (5.5)

the solution of which relates the running coupling αs in the asymptotically free (ρ<∼〈ρ〉)
and confining regimes (ρ>∼ 〈ρ〉)!

The solution for αI
s(1/ρ) in terms of αI

s(ρ/〈ρ〉2) takes a simple and intriguing form,

π

αI
s

(
1
ρ

)
Nc

= −W
(

− π

αI
s(

ρ
〈ρ〉2

)Nc
exp

[

− π

αI
s(

ρ
〈ρ〉2

)Nc

](〈ρ〉
ρ

) ∆
Nc

)

, (5.6)

involving the Lambert W function [26],

W (x) eW (x) = x; with two real branches W0(x) and W−1(x) for − 1/e ≤ x < 0, (5.7)

satisfying W0(−1/e) = W−1(−1/e) = −1. (5.8)
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Note that

for x→ 0− :

{
W0(x) ∼ x− x2 + O(x3) → 0, (principal branch )

W−1(x) ∼ ln(−x) − ln(− ln(−x)) . . . → −∞.
(5.9)

The solution (5.6) exhibits a number of remarkable features to which we turn next.

First of all, let us insert the leading, asymptotically free expression of the running

coupling for large ρ > 〈ρ〉,

αI
s

(
ρ

〈ρ〉2
)

≈ 2π

β0

1

log( ρ
〈ρ〉2 ΛI

)
+ · · · , (5.10)

into the r.h.s of the inversion-symmetry solution (5.6). With the assignment [9]

∆ =
Nc

6

SU(3)
=

1

2
, (5.11)

of the conformal scaling dimension (5.4) and the asymptotics (5.9) of W0(x) for x → 0−,

we find once more a Cornell form of the running coupling for large ρ

αI
s(

1
ρ)Nc

π
≈ 6

11

1

[〈ρ〉ΛI ]11/6 ln
(

ρ
〈ρ〉2ΛI

)
(
ρ

〈ρ〉

)2

− 1 + o

((〈ρ〉
ρ

)2
)

, (5.12)

signalling confinement. In ref. [6], numerical agreement with a Cornell form for αI
s was

observed after solving eq. (5.2) for αI
s(1/ρ) in terms of the UKQCD lattice data [5, 6]

for ρ5 dn(I)

d4z dρ
. Here, we obtained the same result in analytical form, only from conformal

inversion symmetry (5.6) and the known short-distance behaviour of αs.

The non-vanishing conformal scaling dimension (5.11) implies a slight deviation from

the simplest assumption (2.10) of a uniform correction to the ρ dependence via the non-

zero mode factor Q(γ) in the size distribution. At short distances (small ρ), the inver-

sion law (5.4) together with ∆ from eq. (5.11), corresponds to the perturbative correction

Q ∼ (µr ρ)
−Nc/3 as in eq. (2.10). However, at long distances (large ρ), the ρ-dependence

arises only from the calculable zero-mode part J(γ), like in supersymmetric Yang-Mills

theory [15].

Moreover, we note that with the above scaling dimension (5.11), ∆ ∝ Nc, the solu-

tion (5.6) only depends on the ’t Hooft coupling [27], g2
s Nc ∝ αsNc, such that it remains

unchanged in the large Nc limit.

For ρ = 〈ρ〉, eq. (5.6) may be solved for it’s only unknown π
αI

s(1/〈ρ〉) Nc
, along with the

matching condition

u ≡ −W0(−u e−u) = −W−1(−u e−u); where u =
π

αI
s

(
1
〈ρ〉

)
Nc

. (5.13)

One finds the unique solution (due to eq. (5.8)),

αI
s

(
1
〈ρ〉

)
Nc

π
=
αMS

s

(
sI

〈ρ〉

)
Nc

π
= 1, (5.14)
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that indeed matches the peak position of the instanton size distribution (5.2), i.e.
d

d αI
s
d(1, αI

s) = 0, as function of αI
s(

1
ρ).

Last not least, one may write down an oversimplified but exact closed solution of

eq. (5.6),

αI
s(

1

ρ
) =

2π

β0

(
1 −

(
ρ
〈ρ〉

)2
)

ln( 〈ρ〉ρ )
, Λ ≈ 1

〈ρ〉 , (5.15)

which follows upon requiring in addition to eq. (5.6) the inversion symmetry,
(

ρ

〈ρ〉2
)
αI

s

(
ρ

〈ρ〉2
)

=

(
1

ρ

)
αs

(
1

ρ

)
. (5.16)

Despite it’s simplistic form, eq. (5.15) has no Landau pole for ρ→ 〈ρ〉, exhibits the correct

asymptotic freedom behaviour for ρ⇒ 0, as well as a Cornell form (5.12) for large ρ. The

peak normalization condition (5.14) only holds approximately, αI
s(1/〈ρ〉)Nc/π = 12/11 ≈

1, but can be satisfied with a slightly more complex limiting process. Amazingly, this

(1-loop) form (5.15) of αs exists already in the literature [28], but originated from an

entirely different reasoning. It appeared as the appropriate (1-loop) running coupling

without a Landau pole in a renormalisation-group improved variant of Shirkov’s “analytic

perturbation theory” [29].

6. Conclusions

In the present investigation, we have studied the appealing possibility that the strong

suppression of large-size QCD instantons — as evident from lattice data — is due to a

surviving conformal space-time inversion symmetry.

We started from the known fact that the classical instanton sector is conformally

invariant and notably also invariant under conformal space-time inversion xµ → x ′
µ = b2

x2 xµ.

Since the latter acts non-infinitesimally like a discrete symmetry transformation, it is not a

generator of the conformal group. Yet all conformal generators can be composed of an even

number of inversions and generators of the Poincaré subgroup. This inversion symmetry is

both suggested from the striking invariance of high-quality lattice data for the instanton

size distribution under inversion of the instanton size ρ → 〈ρ〉2/ρ (cf. figure 1) and from

the known validity of space-time inversion symmetry in the classical instanton sector.

Our theoretical line of attack in this paper was restricted to a detailed study of the

zero-mode part of the instanton size distribution, which we have argued to constitute the

”dominating” source of the ρ-dependence. In this context, it is most encouraging that the

instanton size distribution of supersymmetric Yang-Mills theories is known to be entirely

given in terms of zero-modes [15].

A main theoretical step consisted in performing a conformal stereographic projec-

tion of the instanton calculus in flat Euclidean space to the 4-dimensional surface of a

5-dimensional sphere. This way, we have achieved several benefits at once.

• All zero-mode normalisation integrals on the sphere remained finite under space-time

inversion, since the sphere represents a compact, curved geometry.
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• The identification of the sphere radius b ≡ 〈ρ〉 provided a natural way of introducing

the crucial physical scale 〈ρ〉 into the instanton calculus. It acts as the conformal

inversion radius.

• On the sphere surface, the normalization integrals all turned out to be invariant under

space-time inversion due to a ”fortunate cooperation” of the scale factors associated

with both the conformal stereographic projection and space-time inversion.

• While the zero-mode normalizations ‖ψ̂(a)‖, a = 1, 2, 3 (colour) and ρ/〈ρ〉 ‖ψ̂(ρ)‖
(dilatation) are indeed manifestly symmetric under ρ → 〈ρ〉2/ρ, the remaining zero-

mode norms are not. However the product of all of them, as entering the instanton size

distribution, is symmetric to an impressively high degree. Altogether, the resulting

shape due to the product of zero-modes is in good qualitative agreement with the

lattice data (cf. figure 1, figure 7), strongly suppressing large-size instantons!

• The present formulation on the sphere allowed to study various limits of theoretical

interest, which underligned the consistency of the present approach: notably, the

limit ρ/〈ρ〉 → 0 may either be viewed as a ”flat-space” limit (sphere radius 〈ρ〉 → ∞)

with instanton size ρ kept fixed, or as the small instanton limit (ρ → 0) with the

sphere radius 〈ρ〉 kept fixed. Irrespectively, for ρ/〈ρ〉 → 0, we recover the familiar

results of instanton perturbation theory in flat 4-dimensional Euclidean space.

As important, independent and direct further support for conformal inversion symmetry

at work, we presented the striking evidence from a lattice simulation of the chirality-flip

ratio RNS in the QCD vacuum as function of Euclidean time [16, 17].

Finally, we explored some striking consequences of conformal space-time inversion

symmetry beyond instantons, i.e. for QCD in general. It implied a general relation between

the running coupling at short and long distances. From the familiar input of asymptotic

freedom at short distances, we found a Cornell form αI
s(1/ρ) ∝ σ ρ2 at long distance,

signalling confinement.
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A. Conformal transformations

In this paper we consider active conformal transformations [30, 31, 25] throughout,

gµν(x)
∂xµ

∂x′κ
∂xν

∂x′λ
= σ(x) gκλ(x ′) = g ′

κλ(x ′), (A.1)
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where σ(x) is called conformal or scale factor.

The conformal inversion,

xµ → x ′
µ =

b2

x2
xµ, (A.2)

is the relevant transformation for our approach. b is called the radius of inversion. The

scale factor is given as σ(x)inv = x4/b4. The transformation law for a covariant vector field

under an active transformation is given by

A ′
µ(x ′) =

∂xν

∂x′µ
Aν(x) =

√
σ(x)I ν

µ (x)Aν(x), (A.3)

whereas the corresponding contravariant vector field has to transform as [30],

A′µ(x ′) = σ(x)
∂x′µ

∂xν
Aν(x) =

√
σ(x)Iµ

ν(x)A
ν(x), (A.4)

where the scale factor σ(x) appears when pulling up the index with the metric tensor6.

The tensor [13]

I ν
µ (x) =

1√
σ(x)

∂xν

∂x ′µ
. (A.5)

satisfies in Euclidean space-time

Iν
µ(x)Iµ

ρ(x) = δν
ρ. (A.6)

For a conformal space-time inversion it is given by

I inv
µν (x) = δµν − 2xµxν

x2
. (A.7)

Furthermore the length of a vector is not invariant under conformal transformations, in

fact it is stretched by the scale factor,

A′µ(x ′)A ′
µ(x ′) = σ(x)Aµ(x)Aµ(x). (A.8)

The generalisation to second order tensors is straight forward. The volume element changes

according to

d4x ′ =
d4x

σ2(x)
. (A.9)

Transformation rules for stereographic projection:

Âa = σ(x)sp
∂ra

∂xµ
Aµ(x),

Âa =

(
∂

∂ra
− 1

〈ρ〉2 ra(r · ∂)

)
(xµ)Aµ(x),

Âa(r)Â
a(r) = σ(x)sp Aµ(x)Aµ(x),

raÂ
a(r) = 0.

(A.10)

The stereographic projection is done in such a way that this constraint comes naturally

with the transformation rules to ensure that the projected vector fields indeed stay on the

sphere.

6In the case of a passive transformation this factor would not be included.
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B. Zero modes for SU(3)

For completeness, we list here the twelve SU(3) zero modes as derived by Bernard [14] and

used in this paper.

An SU(3) instanton is obtained by embedding the SU(2) instanton into the ”upper-

left-hand corner” of the fundamental representation of SU(3). Thus, in singular gauge, an

SU(3) instanton takes the form

A(I)
µ (x) =

1√
παs

η̄aµνx
ν

x2 (ρ2 + x2)

λa

2
, (B.1)

where λa are the first three Gell-Mann matrices and η̄aµν are the ’t Hooft coefficients [2]

for SU(2). Latin indices a and b run from 1 to 3 and Greek indices µ and ν are space-time

indices running from 1 to 4.

The zero modes are in background gauge with respect to the classical instanton field,

Dcl
µψ

(i)
µ = ∂µψ

(i)
µ − i

√
4παs

[
A(I)

µ , ψ(i)
µ

]
= 0. (B.2)

Dilatation zero mode:

ψ(ρ)
µ (x) =

2√
παs

ρ η̄aµν x
ν

(x2 + ρ2)2
λa

2
(B.3)

Colour zero modes for generators λa; a = 1, 2, 3:

ψ(a)
µ (x) =

1

2
√
παs

ρ2

(x2 + ρ2)2

(
2xµλ

a − i η̄bµνx
ν [λb, λa]

)
. (B.4)

Colour zero modes for generators λα; α = 4, 5, 6, 7:

ψ(α)
µ =

1

2
√
παs

ρ2

(x2)1/2(x2 + ρ2)3/2

(
xµλα − i η̄bµν x

ν [λb, λα]
)

(B.5)

Here λα denote the four Gell-Mann matrices λ4 . . . λ7.

Translation zero modes:

ψ (zν)
µ (x) =

∂A
(I)
µ (x− z)

∂zν

∣∣∣
z=0

+Dcl
µ (A(I)

ν (x))

= −∂νA
(I)
µ (x) + ∂µA

(I)
ν (x) + i

√
4παs[A

(I)
µ (x), A(I)

ν (x)]

= − 4√
παs

ρ2

(ρ2 + x2)2

[
xµx

σ

x2
− 1

4
δσ
µ

]
η̄aνσ

λa

2
− (µ↔ ν)

= Fµν(x).

(B.6)
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